

Ghana Green Building Council public launch

examples of green buildings in South Africa

eric noir, WSP GBD 17 August 2011

civil engineering & building contractors

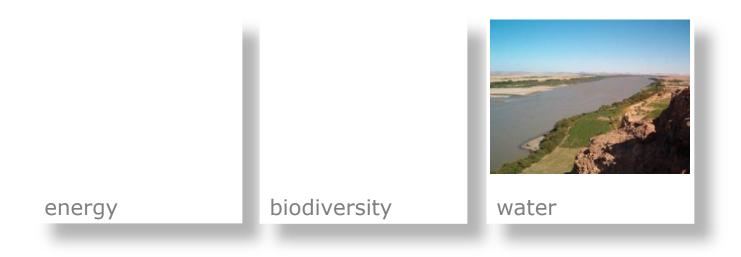
GOLD

COLD

ALUMINIUM SYSTEMS Ltd.

energy

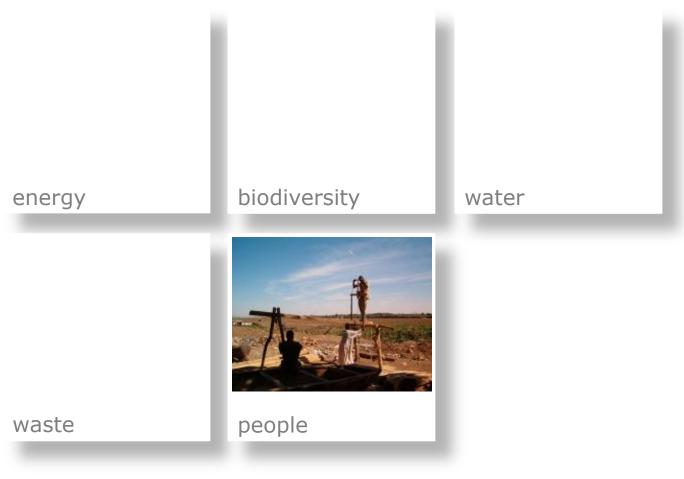
a 'ticking time bomb'



six interrelated 'ticking time bombs'

- . tipping point
- . compelling each other

six interrelated 'ticking time bombs'


- . tipping point
- . compelling each other

. compelling each other

six interrelated 'ticking time bombs'

- . tipping point
- . compelling each other

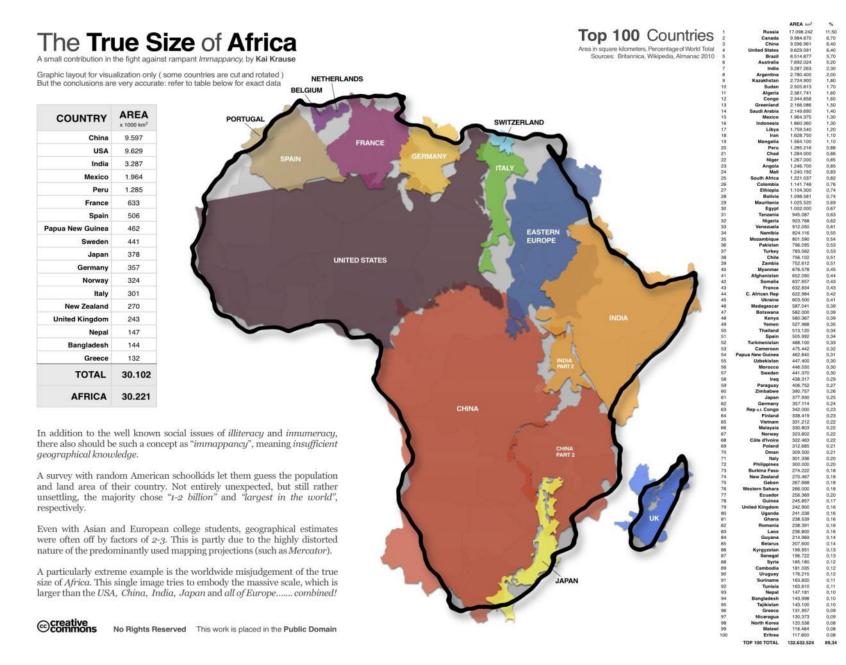
energy	biodiversity	water
waste	people	food security

six interrelated 'ticking time bombs'

- . tipping point
- . compelling each other

can the built environment professions address holistically these problems?

- . integrated design
- . multidisciplinary approach to design


integrated approach to design

- . integrated approach to design is no eco-gadgetry
- realising the increasing role of the professions in the built environment, at the building and urban scale when it comes to sustainable design
- . breaking the silos of the current professional practice

truly multi-disciplinary professional teams are:

- . adding value on a project specific basis
- . seeking solutions collectively beyond the box
- . increasing the potential for cross-pollination of thoughts and technical solutions
- . providing a fertile ground for the inquisitive quality that prevails in sustainable approach to design
- . contributing to reduction of excess fat in design allowances

United States

Europe

India

Japan

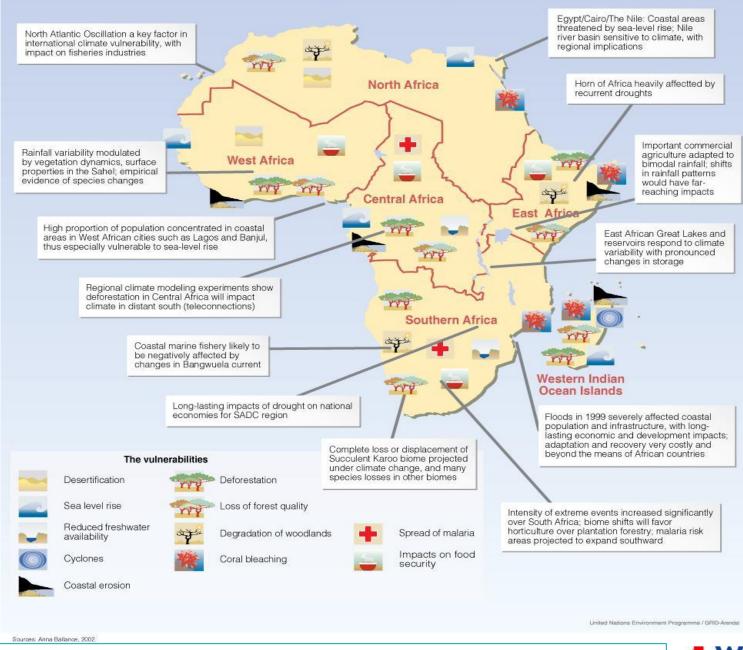
China

GREEN by DESIGN

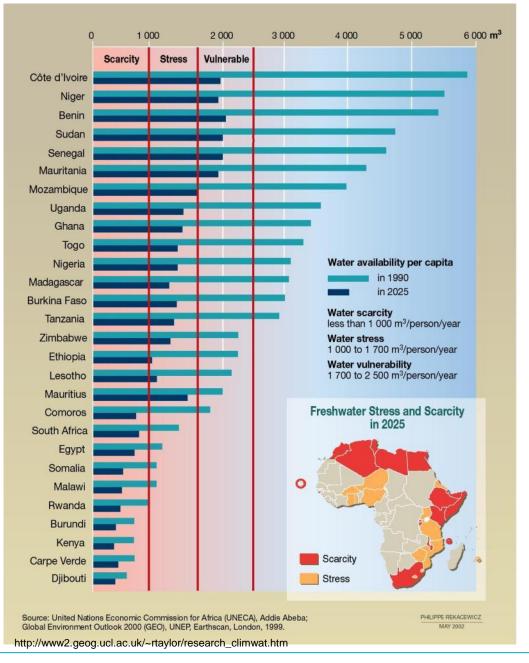
Africa needs to prepare for unprecedented urban growth

- . urbanised population will triple in the next 40 years
- . almost 200 million people currently live in slums
- . parts of North Africa has successfully reduced the amount of people living in slums by about 20%

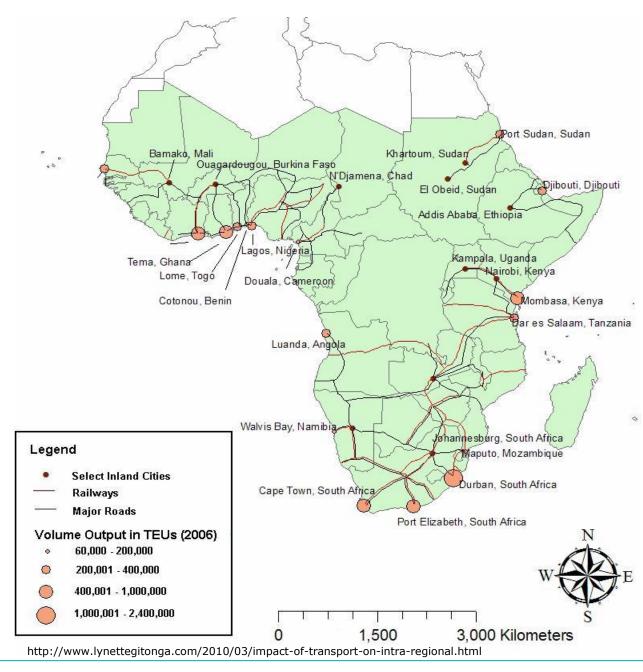
many cities are already facing problems of :


- . overcrowding
- . irregular supplies of water and energy
- . poor sanitation and transport infrastructure

social spending is absorbing financial, time and expertise resources and is appropriately considered an uppermost priority


infrastructure costs about twice as much in Africa as it does in developed Countries (Africa Development Forum, Africa's infrastructure: a time for transformation, World Bank 2009)

Climate Change Vulnerability in Africa



infrastructure: water scarcity in Africa

. the future is now

Ghana Green Building Council public launch | examples of green buildings in South Africa

infrastructure: Africa transport map

1 ton of good emits about the same amount of carbon in transport for:

- 800km by truck
- . 4'000km by train
- . 8'000km by ship

trains currently travel at an average of 10 km/h

trucks are travelling at about 25 km/h

ships cruise at 45 km/h

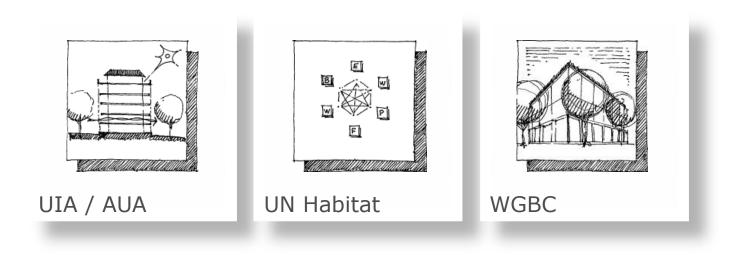
South Africa carbon reduction target: 34% by 2020

. carbon intensive energy mix

RSA 960gr of CO_2 per kilowatt of electricity, European average of 630gr., Switzerland 143gr.

. cities morphology

sprawling cities, primarily individual car based mobility, mono-use zoning


. intercity distances

greater reliance on air travel

. need for economy growth

increased pressure on the built environment to achieve national targets

Africa Network of Green Building Councils

is envisaged by:

- . International Union of Architects (UIA) / Africa Union of Architects (AUA)
- . UN Habitat
- . World Green Building Council

emerging Green Building Councils:

Egypt, Ghana, Kenya, Mauritius, Morocco, Namibia, Nigeria

reflexion

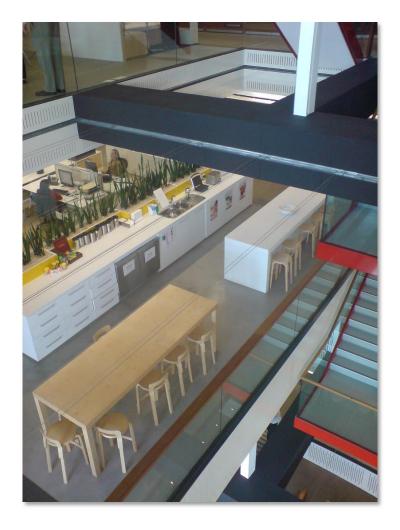
buildings have evolved almost in a Darwinian way towards least-cost: to change this for a sustainable outcome, we are nothing less than up against 'evolution'

it is about market transformation, and our role is overcoming resistance to change

we must focus on the process rather than the product

Africa is not that different to the rest of the world only the symptoms of sustainability illness are exacerbated

It is Africa's hope and ambition, as well as my personal conviction that, in return for subsidies and developmental aid, Africa will offer global, original and appropriate solutions to the careful balancing act of reconciling socio-economic issues with the broader sustainability imperative



corporate social responsibility type of responses

eco-gadgetry implementation as opposed to design process orientated decision making

R10 / m² / month energy & water
R100 / m² / month rental
R1'000 / m² / month salary mass

modern ways of working & sustainability: beneficial synergy

schools: 20% better test performance hospitals: 2½ day earlier discharge retail: increase in sales per square meter factories: increased production offices: 2-16% increased productivity

Vivian Loftness, GBCSA, 2008

the first modern day sustainable building in Southern Africa

Eastgate building mixed use (office & retail) Harare, Zimbabwe Mick Pearce architect

1996

Katorus Market Society Special Presidential Project Kathlehong, Tokoza, Vosloorus township

completion 1999

urban regeneration architecture

Eric Noir, project architect GAPP Architects & Urban Designers (prior establishment of GREEN by DESIGN)

"the planning professions should be appearing before the Truth and Reconciliation Commission" L. Bremner, Chair of Architecture, Wits, 1996

ARCHITECTS KrugerRoos architects urban designers JoshuaConrad architects

DEVELOPER Victoria & Alfred Waterfront Company

> ELECTRICAL ENGINEER Solutionstation

FAÇADE ENGINEER LC Consulting Engineers WSP

> FIRE ENGINEERS Bramley and Associates

LANDSCAPE ARCHITECTS Waterfront Landscape Architects

> MAIN CONTRACTOR Grinaker LTA

MECHANICAL ENGINEER Spoormaker and Partners Basil Nair Assoc

QUANTITY SURVEYOR Letchmia, Daya Varachhia Quantity Surveyors

> STRUCTURAL & CIVIL ENGINEER LC Consulting Engineers WSP OWS Consulting Engineers PD Naidoo and Associates

SUSTAINABILITY CONSULTANT GREEN by DESIGN WSP

> WET SERVICES ENGINEER Benatar Consulting

RED brief broad-based claim SA benchmark

ENERGY:

overall energy consumption of the serviceable areas not to exceed 115kWh/m²/an

 $(light 15 kWh/m^2/an; fans and pumps 5 kWh/m^2/an; small power 20 kWh/m^2/an; heating/cooling 70 kWh/m^2/an; hot water 5 kWh/m^2/an))$

10% of the overall energy should be from a renewable source

RESOURCE EFFICIENCY:

- municipal water consumption set to be at least 20% better then that of an equivalent conventional building
- building materials sourced locally from the Cape area where possible and imported components kept to a bare minimum
- substantial proportion of recycled materials to be used in the construction process
- construction waste to be sorted and recycled where possible

COMMUNITY, SOCIAL & ECONOMIC:

- provision of high quality working environment with high levels of comfort
- good range of amenities to be provided to supplement working conditions
- good proportion of the construction contracts to be undertaken by SMME's
- majority of the contractors to be from the Cape area

Woolworths New national distribution centre Midrand Johannesburg

completion 2007

ARCHITECTS R&L Architects

CIVIL ENGINEERS Africon

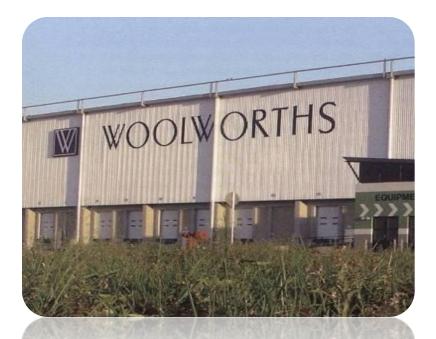
COLD ROOM PANELLING WSP Consulting Engineers

EARTHWORKS Concor Roads

ELECTRICAL ENGINEER CKR Engineering (Pty) Ltd

ENVIRONMENTAL IMPACT ASSESSMENT Mills & Otten CC

> FIRE SAFETY ENGINEER SFT - Specialised Fire Technology


> > GENERAL CONTRACTOR WBHO

HEALTH AND SAFETY Cairnmead Consultancy

LANDSCAPE ARCHITECT Newtown Landscape Architects CC

> LOGISTICAL PLANNING LPC International Limited

MECHANICAL ENGINEER WSP Consulting Engineers SA

PROJECT MANAGER MDSA Project & Construction Management

> QUANTITY SURVEYOR NWS - Norval Wentzel Steinberg

REFRIGERATION PLANT WS&B Worthington Smith & Bouwer WSP

> STRUCTURAL ENGINEER Africon

SUSTAINABILITY CONSULTANTS GREEN by DESIGN WSP

WET SERVICES Ubunye Engineering Services (Pty.) Ltd WSP

question everything design-led approach post-occupancy evaluation

Ghana Green Building Council public launch | examples of green buildings in South Africa GREEN by DESIGN

Ghana Green Building Council public launch | examples of green buildings in South Africa

GREEN by DESIGN

ARCHITECTS GLH Architects / Terra Ether Architects

> DISABILITY SPECIALIST Disability Solutions (Pty)

ELECTRICAL ENGINEER Claasen Auret Inc.

> FIRE ENGINEER TWCE

LIFT SPECIALIST Building Transportation Consultants

> MECHANICAL ENGINEER Africon

> > PROJECT MANAGER Coffey Projects

MAIN CONTRACTOR Group 5 Building

QUANTITY SURVEYORS SBDS / LDM JHM Inc.

STRUCTURAL ENGINEERS WSP Structures/Asakheni

SUSTAINABILITY CONSULTANTS GREEN by DESIGN WSP

SUSTAINABILITY DESIGN REVIEW GREEN by DESIGN / PJCarew Consulting / CSIR

> WET SERVICES WSP Group

Nedbank phase II new office building Johannesburg

completion 2010

sustainability design review SBAT assessment 'shades of green[©]' 1st greenstar certified building in South Africa greenstar sa office v1, 'design' & 'as built' rating

images courtesy of GLH Architects / Terra Ether Architects

Nedbank phase II

- extension of Nedbank Phase I (Practical Completion Nov 2001)
- located on the corner of Rivonia and Maude Street in Sandton
- 41'946 sqm of office GFA
- 36'246 sqm of office UA
- 3'455 sqm of retail GFA
- ground floor with offices & retail
- eight floors of offices
- five levels of underground parking with 1'598 parking bays
- 3'000 employees to occupy the building

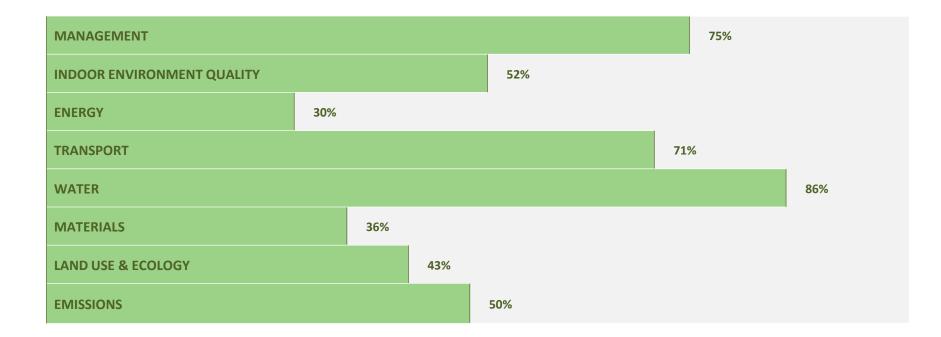
	conventional practice	best practice	worldwide cutting edge
land	land selected on availability / opportunity	land selected on proximity to amenities and retail stores	<pre>land selected on proximity to amenities, retail stores, medical facilities, schools, etc on site food production</pre>
	EIA basic requirements	improved EIA requirements	exceeded EIA requirements
		mimic eco-system functions	assumed ecosystems functions
	minimum legal requirements for stormwater discharge	improved requirements for stormwater discharge by passive filtration	exceeded requirements for stormwater discharge by bio-active filtration
water	standard fixtures	waterwise fixtures	waterwise and waterless fixtures
	municipal potable water used for all uses	stormwater retention for irrigation	stormwater accumulation for irrigation
		target: 20% municipal	greywater recycling
	conventional energy sources	10% energy consumption from renewable sources energy efficient	purely rely on renewable energy and produce surplus super efficient fittings
energy	standard electrical fittings and equipment	fittings and equipment natural ventilation and passive solar design	and equipment, heat & coolth recycling building physics to assume by natural means
		target: 20% reduction in energy consumption from non-renewable sources	most of heating-cooling, lighting and ventilation

	conventional practice	best practice	worldwide cutting edge
materials	selection based on aesthetics and affordability in a global economy	<pre>selection based on national production: reduced transport reduced packaging stimulation of local economy "think globally - act locally" materials from renewable sources recycle waste</pre>	<pre>selection based on local economy and embodied energy content use recycled materials to build biosphere/technosphere principles (ink on paper or embossed logo)</pre>
emissions	no concerns for non-industrial applications	reduced: urban heat island air particles water contamination light pollution noise emission	treatment of sun energy absorbing surfaces with landscape shading active air filtration bio-active water filtration reduce & shading outside lighting advanced acoustic measures
people	comfort based on functionality, aesthetics	<pre>comfort based on functionality, aesthetics improved views, levels of privacy natural light thermal control</pre>	<pre>comfort based on functionality, aesthetics improved views, levels of privacy natural light thermal control social activities neighbourhood watch</pre>

the 'shades of green' evaluation

topic / project	good practice	best practice	context cutting edge
8. glasing			
9. blinds			
10.off-gasing materials			
11.recycled content materials			
12.low embodied energy mat.			
13 urbanism			
14/15. economy cycle		partial	full
16/17/18. grey water	irrigate landscape	flush toilet	full grey water
19.no hot water on floors			
20.vegetarian meals			
21.basement management			
22/23/24 light switching	presence	presence and natural light	Dali system
25.laptop based operations			
26.renewable energy		20%	50%
27.metering			
28.skills transfers			
29.construction waste			
30.locally sourced materials			

topic / project	good practice	best practice	context cutting edge
8. glasing		- R 582'870	- R 582'870
9. blinds		R 1'189'703	R 1'189'703
10.off-gasing materials			value R 500'000
11.recycled content materials			value R 500'000
12.low embodied energy mat.			value R 500'000
13 urbanism	R 200'000	R 200'000	R 200'000
14/15. economy cycle		R 917'074	R 8'550'530
16/17/18. grey water	R 1'186'452	R 2'422'904	R 3'959'356
19.no hot water on floors		- R 80'000	- R 80'000
20.vegetarian meals			saving
21.basement management		R 0	R 0
22/23/24 light switching	R 825'000	R 1'115'000	R 3'379'590
25.laptop based operations		R 5'570'000	R 5'570'000
26.renewable energy		R 0	R 0
27.Metering	R 300'000	R 300'000	R 300'000
28.skills transfers		value R1'000'000	value R1'500'000
29.construction waste		R 0	R 0
30.locally sourced materials		R 0	
total CAPEX	R 2'511'452	R 12'051'811	R 25'486'309
total CAPEX base R427'499'126	R 430'010'578	R 439'550'937	R 452'985'435
increase	0.59%	2.82%	5.96%



topic / project	good practice	best practice	context cutting edge
8. glasing		R 0	R 0
9. blinds		R 0	R 0
10.off-gasing materials			R 0
11.recycled content materials			R 0
12.low embodied energy mat.			R 0
13 urbanism	R 0	R 0	R 0
14/15. economy cycle]	R 170'997	R 331'594
16/17/18. grey water	R 72'813	R 100'470	R 242'724
19.no hot water on floors]	R 37'403	R 37'403
20.vegetarian meals]		saving
21.basement management		R 363'434	R 363'434
22/23/24 light switching	R 153'138	R 177'699	R 200'177
25.laptop based operations]	R 768'552	R 768'552
26.renewable energy		- R 1'085'254	- R 2'713'135
27.metering	R 0	R 0	R 0
28.skills transfers		R 0	R 0
29.construction waste		R 0	R 0
30.locally sourced materials		R 0	
total RUNEX saved per annum	R 225'951	R 1'618'555	R 1'943'884
total RUNEX base R4'244'027	R 4'018'076	R 2'625'472	R 2'300'143
savings (without renewable)	5.32%	38.14%	46.80%

category scores

round 1 submission

- 12 week collection period for the professionals
- 2 week collation period
- 59 points claimed in submission
- 6 week assessment period by the GBCSA

round 1 results

22 points approved

	Represents	Score	Rating
****	Minimum practice	10	One Star
****	Average practice	20	Two Star
****	Good practice	30	Three Star
****	Best practice	45	Four Star
****	South African Excellence	60	Five Star
* * * * *	World Leadership	75	Six Star
	World Leadership		
XXXX	Excellence		

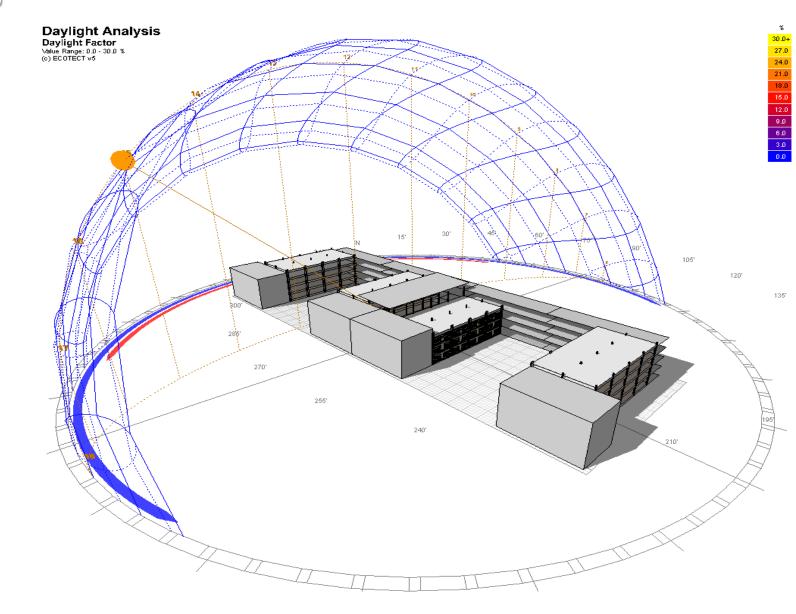
Ghana Green Building Council public launch | examples of green buildings in South Africa

round 2 submission

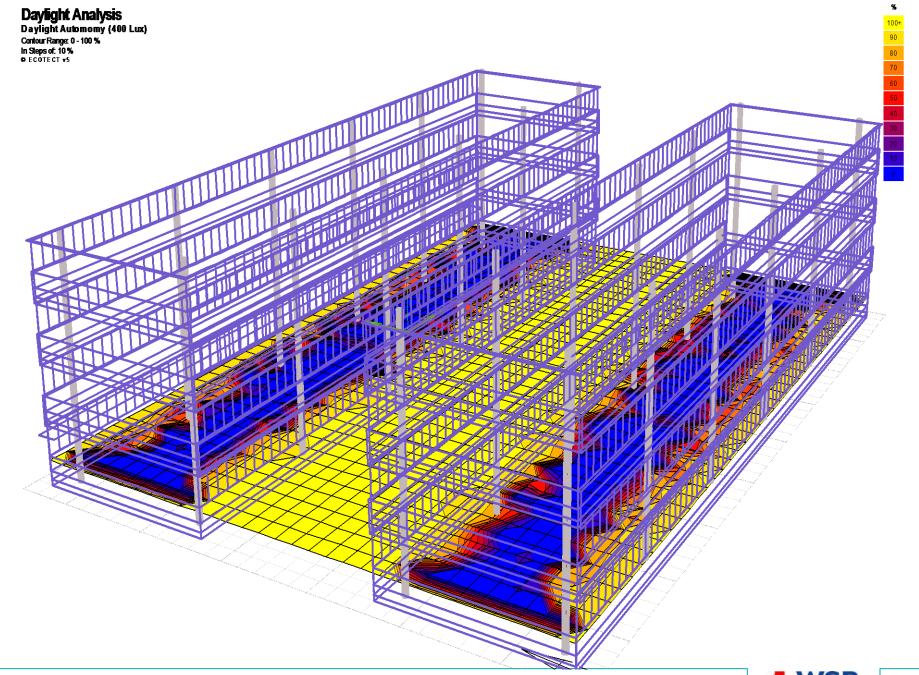
- 20 separate credits to be resubmitted
- 2 week collection period for the professionals
- 1 new credit submitted
- I new innovation credit submitted
- 1.5 week collation period
- 57 point submitted
- 4 week assessment period by the GBCSA

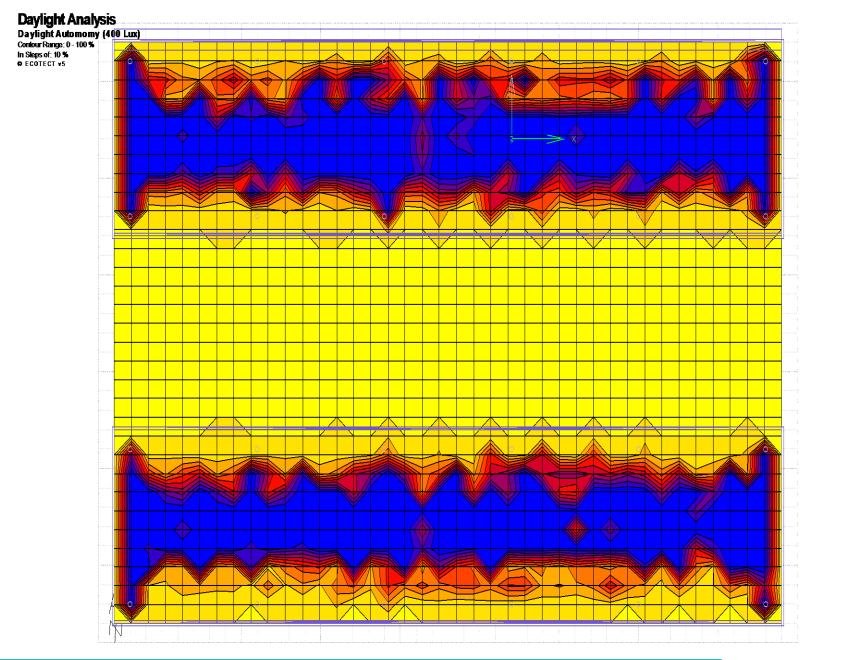
round 2 results

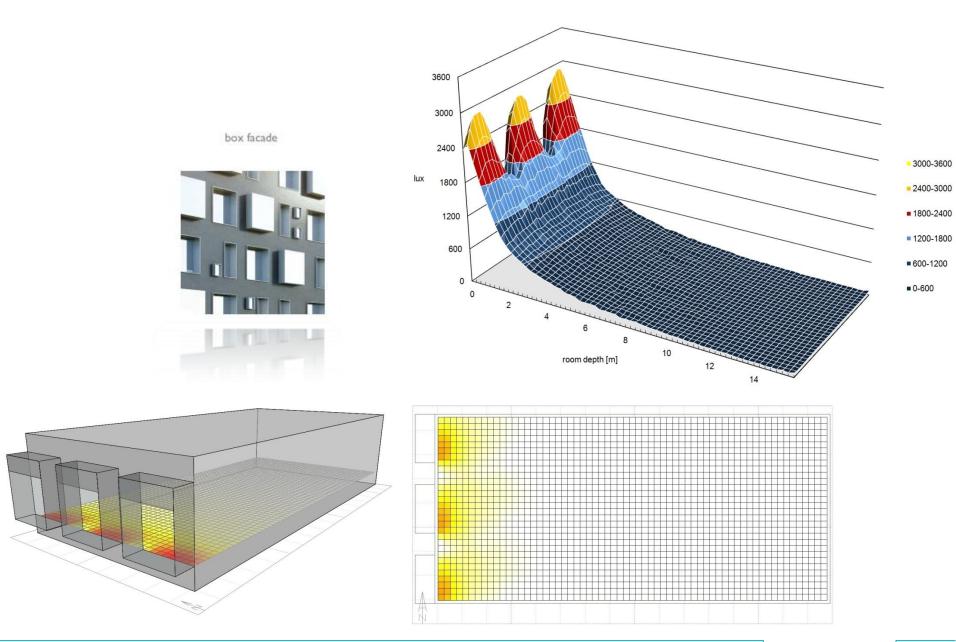
54 points approved

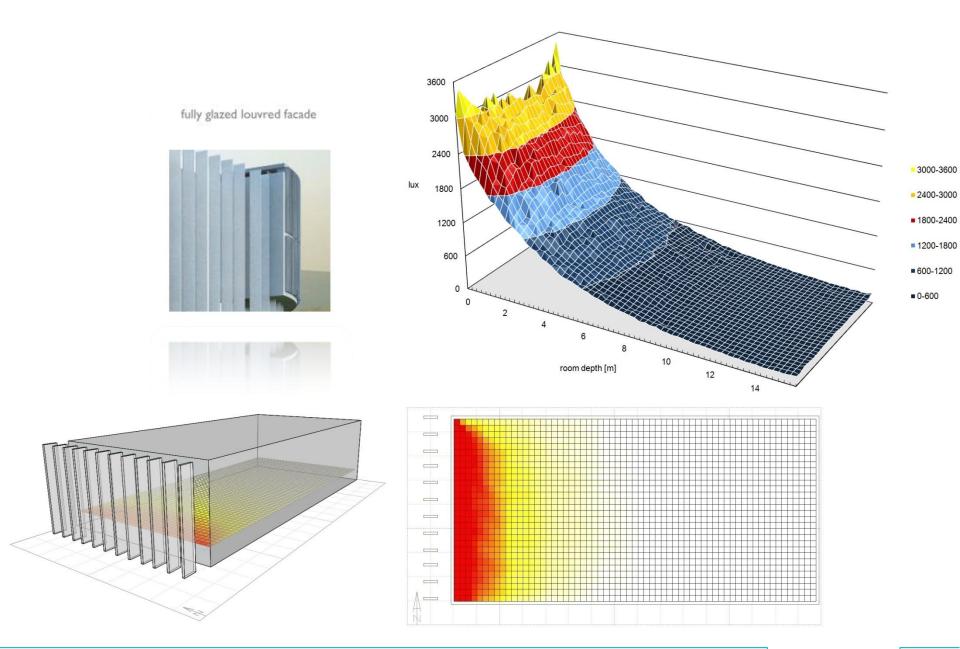


Rating	Score	Represents	
One Star	10	Minimum practice	*****
Two Star	20	Average practice	*****
Three Star	30	Good practice	*****
Four Star	45	Best practice	*****
Five Star	60	South African Excellence	*****
Six Star	75	World Leadership	*****
Six Star	75	World Leadership	*****
		Excellence	XXXXXX

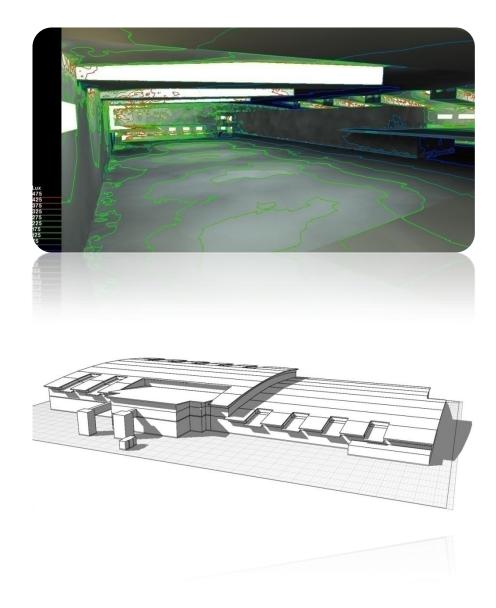

Ghana Green Building Council public launch | examples of green buildings in South Africa

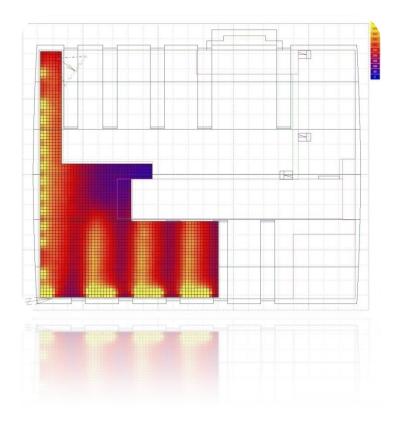

3d modeling

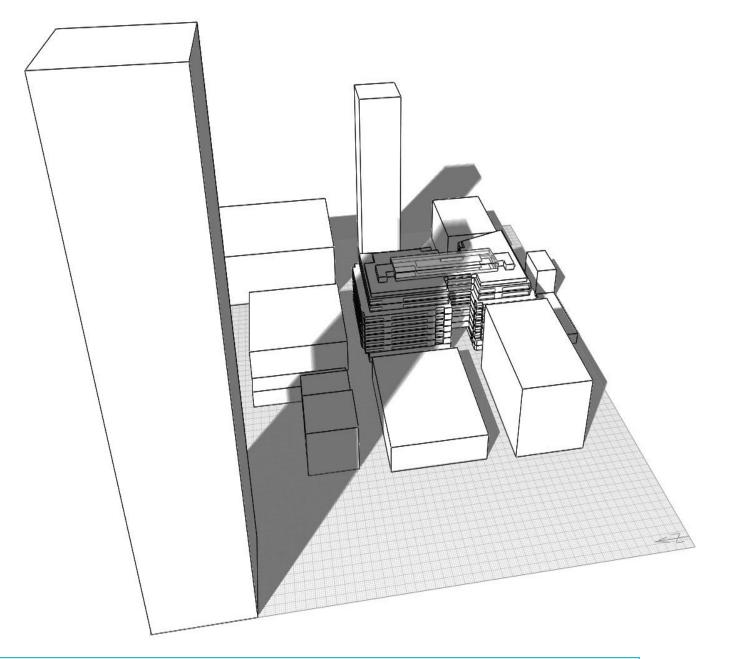


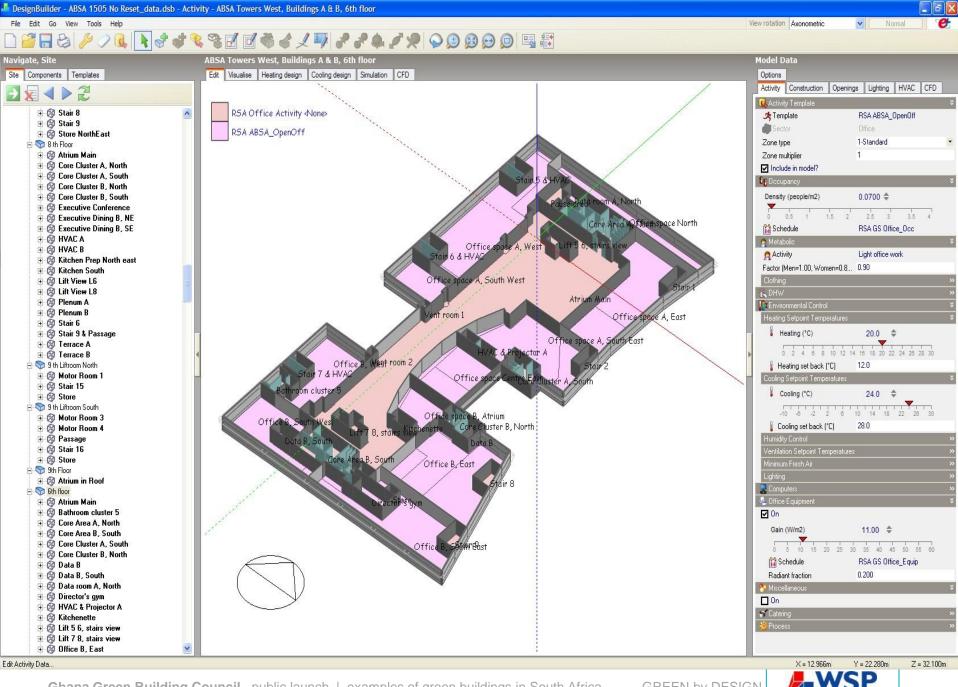


70 60


40 30 20



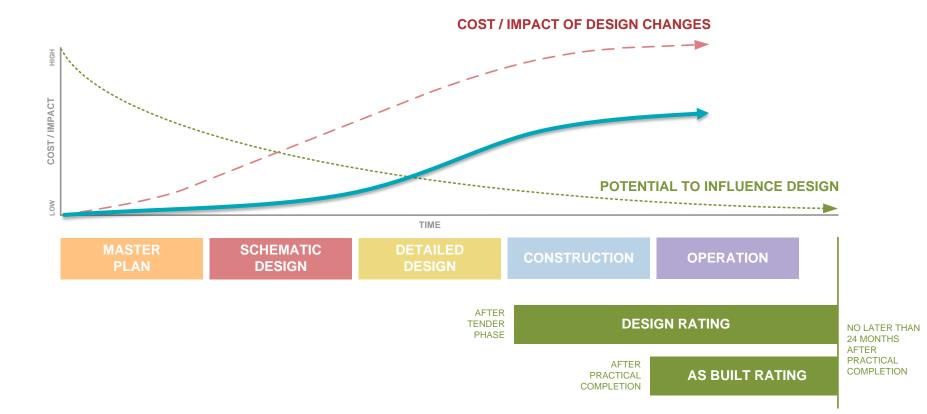




Temperatures, Heat Gains and Energy Consumption - ABSA Towers West, Buildings A & B

1 Jan - 31 Dec (Zone conditions reported for occupied periods only), Daily

Chiller (Electricity) System Fans System Pumps 💻 Heat Generation (Electricity) Room Electricity 6000 Fuel (KVh) 4000 2000 0 Radiant Temperature Operative Temperature Outside Dry-Bulb Temperature 25 20 Temperature (°C) $^{\prime}$ 15 10 5 External Infiltration General Lighting Computer + Equip Cocupancy Solar Gains Interior Windows Solar Gains Exterior Windows Zone/Svs Sensible Heating Sensible Coolin Zone/Svs 5000 Heat Balance (kWh) 0 -5000 -10000 -15000 Zone Heating Total Cooling Sensible Cooling AHU Heating 5000 0 System Energy (KWh) -5000 -10000 -15000 2002 Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day Jan 2002



Licensed

WATER INPUT		<u>Jan</u>	<u>Feb</u>	<u>Mar</u>	<u>Apr</u>	<u>May</u>	Jun	<u>Jul</u>	<u>Aug</u>	<u>Sep</u>	<u>Oct</u>	<u>Nov</u>	<u>Dec</u>	
rain Pretoria		136.0	75.0	82.0	51.0	13.0	7.0	3.0	6.0	22.0	71.0	98.0	110.0	674
0.95 rain clear ro		516.8	285.0	311.6	193.8	49.4	26.6	11.4	22.8	83.6	269.8	372.4	418.0	2561
0.75 rain vegeta		612.0	337.5	369.0	229.5	58.5	31.5	13.5	27.0	99.0	319.5	441.0	495.0	3033
0.95 rain hard la		1292.0	712.5	779.0	484.5	123.5	66.5	28.5	57.0	209.0	674.5	931.0	1045.0	6403
0.5 rain soft lar	nascape	68.0	37.5	41.0	25.5	6.5	3.5	1.5	3.0	11.0	35.5	49.0	55.0	337
potable	ation	588.0	588.0 529.2	588.0 529.2	588.0	588.0 529.2	588.0	588.0	588.0 529.2	588.0	588.0 529.2	588.0 529.2	588.0	
grey produc		529.2			529.2		529.2	529.2		529.2			529.2	
blowdown/o		206.9	193.6	189.3	165.5	150.0	127.1	131.4	146.0	177.0	187.3	192.3	199.6	22007
total water	input	3812.9	2683.3	2807.1	2216.0	1505.1	1372.4	1303.5	1373.0	1696.8	2603.8	3102.9	3329.8	27807
WATER CONSUM	PTION													
potable (wł	nb+kitch)	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	7056
toilets		318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	3821
hvac		727.4	702.3	677.3	602.0	551.8	476.6	501.7	551.8	652.2	677.3	677.3	702.3	7500
irrigation		625.4	687.8	571.4	402.3	525.1	504.0	502.6	619.9	817.0	875.6	817.0	941.6	7890
total wate	r consumption	2259.3	2296.5	2155.0	1910.7	1983.3	1887.0	1910.7	2078.2	2375.5	2459.3	2400.6	2550.3	26267
<u>WATER USAGE</u> potable (whb+kitc	b)	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	7056
source	municipal	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	588.0	7056
source	municipar	500.0	500.0	500.0	500.0	500.0	500.0	500.0	500.0	500.0	500.0	500.0	500.0	/030
toilets		318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	318.4	3821
source	rain clear	516.8	285.0	311.6	193.8	49.4	26.6	11.4	22.8	83.6	269.8	372.4	418.0	2561
	hard landscape	1292.0	712.5	779.0	484.5	123.5	66.5	28.5	57.0	209.0	674.5	931.0	1045.0	6403
deficit	from borehole	.0	.0	.0	.0	-145.5	-225.3	-278.5	-238.6	-25.8	.0	.0	.0	-914
surplus	discharge to hvac	1490.4	679.1	772.2	359.9	.0	.0	.0	.0	.0	625.9	985.0	1144.6	6057
b		707.4	702.2	(77.2)	(02.0	FF1 0	A7C C	F01 7	FF1 0	(52.2		(77.2)	702.2	7500
hvac		727.4	702.3	677.3	602.0	551.8	476.6	501.7	551.8	652.2	677.3	677.3	702.3	7500
source	surplus toilets	1490.4	679.1	772.2	359.9	.0	.0	.0	0.	0.	625.9	985.0	1144.6	6057
J - 6: - :L	rain vegetated	612.0	337.5	369.0	229.5	58.5	31.5	13.5	27.0	99.0	319.5	441.0	495.0	3033
deficit	from borehole	.0	0.	.0	-12.6	-493.3	-445.1	-488.2	-524.8	-553.2	.0	.0	0.	-2517
surplus di	scharge to irrigation	1375.0	314.3	463.9	.0	.0	.0	.0	.0	.0	268.1	748.7	937.3	4107
irrigation		625.4	687.8	571.4	402.3	525.1	504.0	502.6	619.9	817.0	875.6	817.0	941.6	7890
source	surplus hvac	1375.0	314.3	463.9	.0	.0	.0	.0	.0	.0	268.1	748.7	937.3	4107
	w down/condensate	206.9	193.6	189.3	165.5	150.0	127.1	131.4	146.0	177.0	187.3	192.3	199.6	2066
	rain soft landscape	68.0	37.5	41.0	25.5	6.5	3.5	1.5	3.0	11.0	35.5	49.0	55.0	337
	grey water	529.2	529.2	529.2	529.2	529.2	529.2	529.2	529.2	529.2	529.2	529.2	529.2	6350
deficit	from borehole	.0	.0	.0	.0	.0	.0	.0	.0	-99.7	.0	.0	.0	-100
	arge to ground wells	1553.6	386.8	652.1	317.9	160.6	155.8	159.5	58.2	.0	144.5	702.3	779.4	5071
ground acc.	wells water in	1553.6	386.8	652.1	317.9	160.6	155.8	159.5	58.2	.0	144.5	702.3	779.4	5071
	borehole pumping	.0	.0	.0	12.6	638.8	670.4	766.7	763.4	678.7	.0	.0	.0	3531
total wate	r accumulation	1553.6	386.8	652.1	305.3	-478.3	-514.6	-607.2	-705.2	-678.7	144.5	702.3	779.4	1540

Ghana Green Building Council public launch | examples of green buildings in South Africa

thank you

